Quick Inquiry

LOADING...

May

30May

Deployment of IoT

by Team Digireach

The Internet of Things (IoT), also sometimes referred to as the Internet of Everything (IoE), consists of all the web-enabled devices that collect, send and act on data they acquire from their surrounding environments using embedded sensors, processors and communication hardware. These devices, often called “connected” or “smart” devices, can sometimes talk to other related devices, a process called machine-to-machine (M2M) communication. This technology allows for a level of real-time information that we’ve never had before. We can monitor our homes and offices remotely to keep them safe and efficient. Businesses can improve processes to increase productivity and reduce material waste and unforeseen downtime. Sensors in city infrastructure can help reduce road congestion and warn us when infrastructure is in danger of crumbling.

However while this may sound simple enough, its proper deployment is anything but that. An IoT deployment is a process. Unless a business undertakes and completes each part of the process, the deployment will be rich with problems as well as data. Around the world, businesses of many sizes are hitting roadblocks because their IoT deployment is delayed, stalled, refused to work as designed, failed to pass regulatory requirements or didn’t deliver the expected results–sometimes all the above.

  1. Planning- The first step to a good IoT deployment is its planning. This is more about the vision that the management team has in mind about the project than the actual technological aspect of IoT. The management team needs to have a clear grasp of what they and the project have to deliver or the project will be doomed to a premature and unfinished end.
  2. Designing- After setting business goals, designing a compliant network that will deliver them is the second stage. A thorough network design and specification needs to cover the schematic of the network, the choice of components, their locations and identify any issues that might crop up at any point.
  3. Certification- Cellular based IoT deployments also require certain certifications and clearances for the network as well as the devices on it.  Ensuring devices are approved is vital to get the regulatory and carrier sign-offs that mean your deployment can go live.
  4. Testing- No deployment can go live without a thorough period of testing. Testing should not just be about the technology. It is important also to check against the original business goals.

When this process is complete you get to the fifth and final stage where an IoT deployment begins a digital transformation, improves operational efficiency, cuts costs, drives revenues and unlocks profitability.

8May

Why IIoT?

by Team Digireach

IoT (Internet of Things) is the future. The Industrial Internet of Things (IIoT) is a subset of the Internet of Things (IoT). It is basically collecting data/ information from the field through sensors relying it to the cloud using an IoT gateway. The data is then stored in the cloud storages and analysed and used as per the requirement of the user.

A lot of industry sectors come under the gambit of IIoT. Energy, electricity, manufacturing, logistics etc. are in the nascent stage of deploying IIoT to garner the benefits. Financial benefits of fine-tuning the services by deploying IIoT can run into billions of dollars.

The advantages of IIoT:

  • Better Connectivity: The production personnel will always be aware of the flow of manufacturing at their plant. Individual efficiency of an equipment or a personnel can be tracked.
  • Better deployment: The bottlenecks and efficiency in a plant equipment can be readily read from the data collected. Efficient deployment of the resources can lead to increase to better productivity and less wastage of time.
  • Zero idle time: A constant track of resources and their usage. In a large factory it happens a lot of time that the resources remain idle which effectively is down-time for the production process.
  • Accuracy/ Quality: Automated tracking of the production process and removing manual intervention can lead to better quality of end-products.
  • Safety and repair: Limited manual intervention leads to better safety standards. Preventive detection of failure patterns can lead to timely intervention and service of the equipment. This leads to reduced downtime.
  • Logistics: The Industrial IoT (IIoT) can provide access to real-time supply chain information by deploying sensors at the different vital points in the value chain. A lot of the manufacturing plants have an ERP (Enterprise Resource Planning) at their manufacturing plant. Effective reporting enables manufacturers to collect and feed delivery information into ERP. By connecting plants to suppliers, all the parties concerned with the supply chain can trace inter-dependencies, material flow and manufacturing cycle times. This data will help potentially reduces capital requirements, manufacturers predict issues, reduces inventory and
  • Cost savings: All the points mentioned above ultimately lead to reduction in the cost of manufacturing.

Another industry term which is interchangeably used with IIoT is Industry 4.0. Industry 4.0 is the current stage of the industrial revolution. It represents the use of Industrial Internet of Things (IIoT), in manufacturing. Industry 4.0 focuses on the use of the cloud, gateways and communication networks to monitor factory processes and make data-based decisions.

×