Quick Inquiry

LOADING...

Category "electricity"

1Aug

Distribution Transformer Monitoring

by Team Digireach

Electricity plays a very important role in our daily life. We depend on it for light to see, energy to cook, water to drink and so much more. There are many components and equipments involved in regulating distribution of electricity according to usage. The most critical of these is the transformer. Distribution Transformers (DTs) play a crucial role and act as hub in electrical distribution network, and its correct function is essential for reliable power supply to consumers. Catastrophic failure of a critical transformer would result in power outages in the downstream network and could cause significant economic and environmental challenges.

Let us review some of the factors by which Distribution Transformers’ life cycle can get adversely affected-

  1. Unplanned expansion of networks which causes overloading, resulting in additional losses and generates waste heat.
  2. Incompatible devices being run on transformers, such as a 3 phase device being connected to a single phase transformer.
  3. Stealing of power by hooking from the main supply, unbalancing the transformer or overloading it.
  4. Oil drainage, poor power factor, etc. also cause the transformer to age rapidly.

In India, there is an increase of approximately 14% in the amount of DTs in the network. However, these transformers rarely have intelligence or communication capabilities. Lack of information on the loading of the transformer is one of the main reasons for inefficient distribution network. Transformers are to be monitored very cautiously on a regular basis to avoid unexpected interruption and to anticipate upcoming problem. This has led to the advent of smart grids in India.

Smart grids enable the company to monitor the Distribution Transformer’s working, provide the facility to measure critical parameter and transmit the information to remote data center for analysis and visualization which help system operators to monitor and control the system.

Today, most utilities focus on Smart Grid technology and other aspects that are crucial for the success of their Smart Grid vision. This Internet of Things (IOT) powered Smart Grid technology will help the utilities industry to optimally utilize transformers and identify problems before any catastrophic failure occurs. This online-measuring system is used to collect and analyze temperature data over time. Thus Transformer Monitoring will help to identify or recognize unexpected situations before any serious failure which leads to a greater reliability and significant cost savings.

21Jul

Automatic Power Factor Controller

by Team Digireach

Efficient generation of power at present is crucial, as in the present technological revolution, power is very precious and its wastage is a global concern. We need to find out the causes of power loss and remediate them to improve the power system. This is where the power factor comes into play. Power factor measures a system’s power efficiency and is an important aspect in improving the quality of supply. It is defined as the ratio between the KW (actual load power) and the KVA (apparent load power) drawn by an electrical load. It is simply a measure of how efficiently the load current is being converted into useful work output.

The actual amount of the power being used, or dissipated, in a circuit is called active power (P), and it is measured in watts. Active power is the product of the sinusoidal voltage and current wave form. Reactive power is the power consumed in the ac circuit because of the inductive and capacitive field. The unit used for measuring reactive power is KVAR. Apparent power is the combination of the active power and reactive power.

Hence, the lower the power factor is, the lower is the economic efficiency of the system. A low power factor can be the result of fluctuating current waveforms i.e. unstable input, or a significant phase difference between voltage and current at load terminals. Usually the presence of inductive loads reduces power factor by causing the current to lag behind the voltage and this can be corrected by power factor correction methods.

Power factor correction (PFC) is the process of compensating a lagging current by a leading current, through connecting capacitance to the supply. The capacitor draws current which leads the voltage, thereby offsetting the lag caused by the inductive elements. This Automatic Power Factor Controller (APFC) is designed such that they utilize the scope of the Internet of Things (IoT) to the fullest, to closely monitor the working of the system and make necessary changes to the capacitive components to ensure the power factor is made as close to unity as practically possible without causing unintended side-effects.

APFC devices find application in industries, power distribution system and commercial power lines to increase stability and efficiency of the system. They help in reducing charges on utility bills by pulling in high current drawn from the system. Lesser power consumed means lower greenhouse gas emissions and lesser fossil fuel consumption by the power stations, thereby benefitting the environment.

4Jul

Solar Power Monitoring

by Team Digireach

The biggest achievement, and also one of the best features of IoT (Internet of Things) is the ability to monitor devices remotely and take necessary action as needed. This monitoring feature has widespread applications, not the least of which being more efficient generation of energy from inexhaustible sources. And what better energy source than the Sun itself.

At present, the solar photovoltaic (PV) energy is one of the pivotal renewable energy sources. Solar energy is becoming a potential solution towards sustainable energy supply in future. As more and more Rooftop Solar PV Systems are getting integrated in the existing grids, there is even more need to monitor real time data from solar PV plants to optimize the overall performance.

Solar power plants require continuous maintenance and are hence limited in scale. However with IoT technology, we can remotely monitor the functioning of the solar power plant.

A monitoring system is an essential part of a PV plant. It allows the yield to be monitored and compared with theoretical calculations, and raise warnings in case of performance shortfall. This helps to rectify and detect faults before any appreciable production loss occurs. This same fault could take months before it is noticed and rectified in absence of a proper monitoring system, which would lead to unnecessary revenue loss.

In general, monitoring systems have to fetch, analyze, transmit, manage and feedback the remote information, by making the best use of the most advanced communication technology available. It also merges comprehensive use of instrumentation, electronic technology and computer software and has a huge potential in the upcoming years.

27Jun

Open Access – A market to choose power

by Team Digireach

As per Electricity Act 2003 Open Access is

“Non-discriminatory provision for the use of transmission lines or distribution system or associated facilities with such lines or system by any licensee or consumer or a person engaged in generation in accordance with the regulations specified by the Appropriate Commission”.

The power market may be defined as a system for effecting purchases and sales through available options based on demand-supply dynamics. The Indian power market initially had only limited players. It has now opened to a lot of private players. This has made it a dynamic and vibrant market with a large number of players and rapidly rising volumes.

All 1 MW and above consumers are eligible for open access and it ends the regulators jurisdiction on fixation of energy charges—the power market is heading towards a major transformation.

Open access is one of the key measures to bring about competition in electricity, whereby large consumers have access to the transmission and distribution (T&D) network to obtain electricity from suppliers other than the local distribution company (DISCOM).

Through Open Access, electricity consumers have an option to procure power from alternate sources at competitive prices. Presently, consumers with contract demand of 1 MW and above are eligible for open access. As per the Act, a consumers’ bill will have three parts – wheeling charge, cross subsidy charge and energy purchase charge. While the first two shall remain fixed, consumer could base his decision of procurement as per variable energy purchase charges from suppliers.

The whole concept of Open Access is the consumer exercising choice. There would be multiple vendors of electricity in the market among which the consumers can choose their electricity provider.

On the basis of location of buying and selling entity, the open access is categorized as:

  1. Inter State Open Access:When buying and selling entity belongs to different states. In this case CERC regulations are followed. It is further categorized as:
    1. Short Term Open Access (STOA): open access allowed for the period of less than one month.
    2. Medium Term Open Access (MTOA): open access allowed for a period of 3 months to 3 years.
    3. Long Term Open Access (LTOA): open access allowed for a period of 12 years to 25 years.

 

20Jun

IPDS for sub transmission & distribution network

by Team Digireach

India is a developing country. Power is the mainstay for any growing country. In order to leapfrog into the future, efficient utilization of power generation is of prime importance.

Electricity is the most important factor in the economic growth of any country. And the most critical segment of Power Sector chain including Generation, Transmission and Distribution, is the Distribution Sector. Efficient management of the distribution of electricity sector is mandatory as it acts as an interface between the utilities and the consumers. The real challenge in the power sector today lies in efficiency. However, the poor financial health of the distribution utilities in the States has resulted in inadequate investment in the distribution network making it difficult to meet the increasing demands of power in urban areas.

The goal of IPDS (Integrated Power Development Scheme)  are as follows:

  1. Strengthening of sub-transmission and distribution network in the urban areas;
    Metering of distribution transformers /feeders / consumers in the urban areas.
    3. IT enablement of distribution sector and strengthening of distribution network

The problems the government tries to address by implementing this scheme are as follows:

AT&C losses [The concept of Aggregate Technical & Commercial losses provides a realistic picture of loss situation in the context it is measured. It is combination of energy loss (Technical loss + Theft + inefficiency in billing) & commercial loss (Default in payment + inefficiency in collection).]

  • Establishment of IT enabled energy accounting / auditing system,
  • Improvement in billed energy based on metered consumption
  • Improvement in collection efficiency.

This is a part of the Indian government scheme of Restructured Accelerated Power Development and completion of the Reforms Programme (RAPDRP). It is a flagship programme of the Ministry of Power.

IPDS is important for a brighter future which will help enhance the economic growth of India. Electricity is vital for the overall development of the nation, and the Union Government by launching this scheme is all set to push India in the right direction of development.

Status as per No. 8/2/201 8-IPDS(Pt.) Government of lndia Ministry of Power

Projects worth Rs.30,005 Crore (Distribution Strenglhening work: Rs 2.7,626 Crore in 546 circles, IT enablement: Rs 985 crore in 1931 towns, ERP Rs 640 crore and Smart Meting: Rs 754 crore) have been sanctioned.

Better electricity leads to a better tomorrow. We, at Digital Reach are equipped with the hardware, software, system integration capabilities and domain knowledge to make this a reality.

13Jun

Automatic Under-Frequency Load Shedding

by Team Digireach

The maintenance of maximum service reliability has always been the primary concern of the electric utility industry. To ensure this, power systems are always designed and operated such that working is not affected in any system conditions and load requirements are always met. Usually the designing is such that it can hold up service continuity even under emergency situations, but sometimes, unpredictable conditions of faults, forced outages, etc. may occur. When this happens, it is important to ensure that steps are taken to ensure that a major system outage doesn’t occur.

Any part of a power system will begin to deteriorate if there is an excess of load over available generation. If there is an excess of load over generation ratio, the frequency decreases. It is generally recognised that a sudden drop in generating capacity results in a drop in frequency. This drop is not immediate, but rather, happens gradually.

One way to attain the balance between generation and load, before the decaying frequency affects performance, is to increase generation. However this isn’t always possible practically due to system limitations or due to time constraints. So, a more common method is to employ Automatic Under-Frequency Load Shedding (AUFLS). What this does is that it employs a quick and effective means of attaining a balance of generation and load. The application of AUFLS relays throughout the load area, preset to drop increments of load at specific values of low frequency, provides a simple and direct method of minimizing service interruption and alleviating system overloads.

The Load Shedding function provides under-frequency protection at the main distribution substation. As system frequency decreases, load is disconnected in discrete steps according to frequency thresholds. Protective relays are used for automatic gradually under-frequency load shedding. Under and over-frequency relays are specified by frequency settings and delays. And all this can be incorporated by using IoT Gateway which requires minimum system integration and is fully compatible with most of the applications.

7Jun

IoT in Utilities

by Team Digireach

 

IoT is considered as the next industrial revolution, Industry 4.0. The concept of IoT is to develop advanced solutions and services, enhance productivity & efficiency, solve critical problems, and improve real-time decisions. IoT is changing industry business models, and the utility industry is investing in IoT technology to transform its operations and enhance customer experience. IoT connected utilities can monitor and regulate operations in real-time to maximize efficiency and perform preventive maintenance. Moreover, IoT accelerates digital transformation in utilities.

Implementation of IoT can drastically change the direction the utility industry is headed towards. Many utility companies are on the verge if adopting IoT. Simply the investment in smart grid, smart meters, and home automation can allow utility companies to comprehensively recapture the energy industry and drive top-line growth.

When the utility industry adopts IoT, it connects with the consumer, with the grid, with the world, on a whole new scale. There’s a huge influx of data that can be harnessed to improve services. Companies can utilize smart meters and grids to optimize how the power is distributed. These systems enable greater forecasting capabilities, thereby driving down costs of generation through more efficient scheduling and reliability in the grid, as well as enabling customers to foresee spending patterns and better plan their energy usage over time.

A few applications and benefits of IoT in utilities:

  1. Smart meters are IoT-connected sensors on consumer utility lines. These report data back directly to the company, enabling real-time monitoring and analyzing of data. This can also alert company of maintenance issues and help resolve issues quicker.
  2. Condition-based maintenance routines can be improved by utilities using sensors which measure performance. Data is collected via communication networks to pinpoint problems and predict possible issues using analytics.
  3. Smart buildingscan control light and temperature in real time for maximum comfort and efficiency using interconnected sensors and building control systems.
  4. Precise water irrigation systemswith IoT sensors, including trickle and subsurface methods, greatly reduce water consumption and have the ability to integrate with utility demand response systems.
3Jun

IoT in Textile Industry

by Team Digireach

The textile industry has come a long way from the old handcrafting days, but it still has a huge potential for progress. As an industry which used to be highly labor intensive but has now achieved a high degree of automation, textile has been and will continue to be at the forefront of the adoption of new technologies.

Foremost among these new technologies is Internet of Things (IoT). Being an industry which relies heavily on fine details such as equipment monitoring, stock management for dyes and raw material, supply chain visibility, workforce management and coordination, and analysis, textile is the most suited industry for digital transformation.

Scope of IoT innovations in Textile Industry-

  1. Factory Operations Monitoring- Factory environment parameters such as humidity, temperature, etc., can seriously affect the quality of fabric and thereby the entire manufacturing process. Using sensors connected to the cloud, we can keep track of these conditions and regulate them, as necessary, using air conditioners, de humidifiers, etc.
  2. Equipment Maintenance- Machine properties and outputs can be synced to cloud data and monitored in real time. Necessary periodic and/or preventive maintenance can also be set to trigger when certain conditions are met.
  3. Energy/ Efficiency – The energy consumed in each of the machines can be monitored. Data can be collected and algorithm can be fad into the system to determine the efficiency of each of the unit. This would enable to do proper planning and lead to better efficiency.

While there is a huge scope for progress, there are also challenges which have to be overcome to make IoT in textile industry a reality-

  • Connection overhead and huge bandwidth consumption of multiple weaving machines connected over Ethernet
  • Administration and management of voluminous structured and unstructured data
  • Compatibility of ERP and Operations, Administration & Management System with IoT Service Management Platform
  • With huge amounts of data transferred online every second, the biggest challenge to IoT platforms is security and data protection.

If these challenges can be dealt with successfully textile industry can be optimized to its full potential with the incorporation of IoT.

8Apr

IPDS (Integrated Power Development Scheme)

by Team Digireach

We are moving to an energy intensive world. Among the different stages of electricity generation and consumption, distribution is a primary area where we can make necessary adjustments in the power sector value chain to increase efficiency drastically.

One of the features of the Indian power sector reforms is the increased attention to the distribution sector. Systems and procedures for monitoring Quality of Service (QoS) of distribution utilities have been finalized by State Electricity Regulatory Commissions, especially subsequent to the Electricity Act 2003.

Distribution is the most important link in the entire power sector value chain.  As the only interface between utilities and consumers, it is the cash register for the entire sector. Under the Indian Constitution, power is a Concurrent subject and the responsibility for distribution and supply of power to rural and urban consumers rests with the states.

Systems to improve consumer interface, quantify performance and to monitor progress in a transparent manner are necessary and welcome steps. QoS process meets one of the many long felt needs to improve distribution sector. At this initial stage, it is crucial that the distribution utilities and regulatory commissions show serious end to end commitment in the QoS process. This includes the steps of formulating the system, reporting performance, monitoring progress and taking corrective measures. It is also important to proactively work for the active participation of consumers at all stages of the process. With such an approach, over the years, QoS process can evolve to be the necessary and sufficient condition for continuous improvement of the distribution sector.

Government of India provides assistance to states through various Central Sector / centrally sponsored schemes for improving the distribution sector. Integrated Power Development Scheme (IPDS) approved on 20.11.2014 with a total outlay of Rs 32,612 crore which includes a budgetary support of Rs 25,354 crore from Govt. of India. The objectives of scheme are:

  • Strengthening of sub-transmission and distribution networks in the urban areas
  • Metering of distribution transformers / feeders / consumers in the urban area.
  • IT enablement of distribution sector and strengthening of distribution network
8Apr

RT DAS (Real-time Data Acquisition System)

by Team Digireach

In today’s world, data is generated at a brisk pace in all domains. Data is the new oil. We help you capture the data and gain insights from them.

We install sensors and other electrical devices like CTs, PTs, circuit breakers, switches and circuit breakers to collect and register data points.

Real site photos of our successful implementation of RT DAS:

RT-DAS system for SAIFI/ SAIDI measurement: GOI is extending financial assistance through various programmes to establish Feeder Remote Terminal Unit (FRTU). FRTU is an intelligent electronic device designed for use in feeder automation.

FRTU based SAIFI/ SAIDI measurement system in Non SCADA towns to accurately measure reliability of power distribution network and facilitate utility to take suitable administrative action for enhancement of power reliability. The same can be ensured by real time data acquisition system (RT-DAS) using FRTU at substation. It shall also facilitate utility to take appropriate measures for improvement of SAIDI/ SAIFI by knowing the reason of poor values of indices

IPDS (Integrated Power Development Scheme) was approved by the government to strengthen sub-transmission and distribution network inlcuding metering at all levels in urban areas.

Earlier scheme of Restructured Accelerated Power Development and Reforms Programme (R-APDRP) is subsumed in the new scheme of IPDS.

Major components of the scheme are:

  • Strengthening of sub-transmission and distribution network
  • Metering
  • IP application – ERP and cuustomer care service
  • Provisioning of solar panels
  • Ongoing works of R-APDRP to be completed

Advantages of implementing RT DAS:

  • Reports (SAIFI/ SAIDI reports for regulators and as per IEEE norms etc.)
  • Operation monitor to operative cycles of switching devices to have preventive maintenance
  • Data in the form of analytics
  • Historical data and MIS (Management Information System)
  • Future compatibility for controllability and technologies such as SCADA/ AMI etc with addons.

Similar projects undertaken by us in Substation Monitoring (RT DAS):

MSEDCL (Maharashtra State  Electricity Distribution Company Limited)

Photos of our successful implementation at site:

Snapshot of our successfully implemented software for RT-DAS:

We have project (field/ office) installations of the following devices:

ConnectedSCADA makes RT DAS a possibility for you. Step into the future of electricity with us.

Electric reliability indices like SAIFI, SAIDI, SAIFI, CAIDI, MAIFI can be gathered from these data collected at your centers.

For more details feel free to contact us

×